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A misconception which most physicists acquire in their 

formative years is that the photoelectric effect requires 

the quantization of the electromagnetic field for its explana- 

tion. 

text book' illustrates the point. 

The following quotation taken from a widely used physics 

"Einstein's photoelectric equation played an enormous 

part in the development of the modern quantum 

theory. But in spite of its generality and of the 

many successful applications that have been made 

of it in physical theories, the equation 

is, as we shall see presently,based on a concept 

of radiation - the concept of 'light quanta! - 

completely at variance with the most fundamental 

concepts of the classical electromagnetic theory of 

radiation" . 
In fact we shall see that the photoelectric effect may be com- 

pletely explained without invoking the concept of "light quanta". 

To be sure, certain aspects of nature require quantization of 

the electromagnetic field for their explanation, for example: 

1. Planck distribution law for black body radiation 

2. Compton effect (1926), 
(1900) 9 
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3. Spontaneous emission (Dirac, 1927), 
4. Electrodynamic level shifts (1947). 

The photoelectric effect is definitely not included in the 

foregoing list. It is an historical accident that the 

photon concept should have acquired its strongest early sup- 

port from Einstein's considerations on the photoelectric effect. 

The physicists of the early years of this century deserve 
11  great credit for realizing that 

The very existence of atoms, (Bohr, 1913), requires the 

something" had to be quantized. 

finiteness of Planck's constant to be taken into account for 

the behavior of the atomic electrons. However, once granted 

the existence of atoms, we shall see that all of the experimental 

photoelectric phenomena are described by a theory in which 

the electromagnetic field is treated classically while only 

the matter is treated quantum mechanically. These phenomena 

include (a) the Einstein photoelectric relation (l), (b) the 

linear relationship between photocurrent and light intensity 

and (c) observations at low radiation levels where photoelectrons 

are obtained after times of illumination insufficient for 

"accumulation" in an atom of enough energy to liberate an 

electron, i.e., > G o  

A more detailed account of the theory of photoelectron 

emission, in which both the detector (atomic electrons) and 

the electromagnetic field (photons) are quantized, is published 

elsewhere. 2 



3 

Our model for a photodetector consists of a collection 

of completely independent atoms. Each atom has one electron3 

and is bathed in a classical electromagnetic field, for which 

the electric field is 

E(t) = E COS vt . 
0 

As indicated in Fig. 1, the atom has a ground state 

I g), and a quasi-continuum of excited states Ik) which 

are normalized in a length L very large compared to atomic 

dimensions, so that the k levels will approximate a continium 

when L is eventually allowed to become infinite. Photoelectron 

emission involves a transition from lg) to any of the (k) 

states. The Hamiltonian4 for the electron as it interacts 

with the field is 

H = H 0 - eE(t)x, 

where H is the Hamiltonian of the unperturbed atom, x is the 

atomic coordinate operator and e is the negative electronic 

charge. It is convenient to go into the interaction picture 

so that the interaction Hamiltonian becomes 

0 

( 3 )  

V(t) = - eE(t)x(t), 

where 

(4)  
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x(t) = exp iHot/h x ex -iHot/h . c,'.i 3 
The nonvanishing matrix elements of (5) are of the form 

where 1. 

relative to the ground state. We ignore transitions between 

excited states, i.e., we are interested in knowing if the atom 

is ionized, not in what happens to the electron once it is in 

the quasi-continuum. The photoelectron density matrix obeys 

the equation of motion 

is the energy of the kth excited state measured k 

which has the formal solution 

It is convenient to substitute Eq. (8) into (7) to obtain the 

alternative form for the time rate of change of the electronic 

density matrix 

(5) 



5 

as i n  reference (2). 

Let us now proceed t o  derive the r e l a t i o n  

where E i s  the k ine t i c  energy o f  the l i be ra t ed  e lec t ron  and @ 

the  work funct ion of the detector .  The energy d i s t r ibu t ion  

of the ejected e lec t ron  i s  given by the diagonal elements 

of the electron densi ty  matrix, p k Y k ( t ) .  

contr ibut ion t o  p ( t )  i s  obtained by placing p(0 )  i n  the r i g h t  

hand s ide of Eq. (8), using the V ( t )  given by ( 3 ) ,  and noting 

that  the only nonvanishing matrix element of p(0 )  i s  p (0)  = 1, 

we f i n d  

The lowest order 

g, g 

Evaluation o f  the i n t e g r a l  (12) with neglect  of s m a l l  

non-resonant terms gives 

exk, g Eo/2h12 s i n 2  
pk,k(t) 
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It is clear that an electron will be raised to the kth 

excited state with appreciable probability only if 
\ 

= hv,  k 

with an energy spread of order 

which quickly becomes experimentally undetectable. We denote 

by @ = c1 the energy of the first state of the quasi-continuous 

spectrum. T h i s  is the ionization energy of the atom, or work 

function of the photodetector. Measuring the energy E > 0 of 
the liberated electron from the ionization energy by setting 

c = @ + E ,  k 

one has the desired Einstein photoelectric equation 

(17) hV = @ + E .  

Equation (17) can only be satisfied if hv > @, and we see that 

the energy dependence of the ejected photoelectrons obeys 

the Einstein relationship even for a classical radiation field 

illuminating quantized atoms. The concept of a photon is not 

needed. 

The total probability P(t) for finding a photoelectron is 

given by 
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P ( t )  = c p k k,k(t) 

This may be evaluated for the lowest order expressions 

(13) by replacing the sum over k by an integral over e 

2. .  . -+ dco(c). . . ., k s 
where o ( c )  is the number of states per unit range of c .  

In the familiar manner, (13) becomes effectively 

and (18) takes the time proportional form 

P(t) = Y t, 

where the constant y is 

This formula implies a "rate" of transitions y for each 

atom of a collection of independent atoms. This derivation 

provides a solution to an exercise proposed by Schiff5. It 

should be noted that (22) is proportional to the light intensity. 

Equation (21) certainly does not imply the "time delay" which 

some people used to expect for the photoelectrons produced 

by a classical e.m. field. The perturbation begins to mix 

the excited states into the electronic wave function as soon 
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as it is turned on. 

refers to a probability f o r  an ensemble in a typically 

quantum mechanical manner, and statistical fluctuations 

would be inevitable, but as shown elsewhere2, are fully 

and satisfactorily describable by the theory. 

Of course, the calculation of P(t) 

In most time dependent problems one is contented with 

a result like (21), correct to lowest order perturbation 

theory. Because of the simplicity of the model for our 

photodetector, it is possible to carry out the calculation 

to all orders in the perturbation, and hence to have an 

example where rate equations are rigorously justified. 

We begin by noting that, from Eq. ( 8 ) ,  P(t) obeys 

the relations 

d P ( t ) = d C p  dt k k,k (t) 
dt 

or writing out the matrix product explicitly, observing (6) 
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Since p (t') and all p (t') are positive and g,g k,k 
their sum is unity, it is clear that the p 

an upper bound as functions of k. 

in the following fashion. It was seen from Eq. (15) 

(t') have 
k,k 

This may be estimated 

that only the quasi-continuous states k in a range of 

energy 

(given by an uncertainty principle) are appreciably excited. 

The number N of these s t a t e s  is about 

At this stage in the calculation we might not be sure 

that the k dependence of p 

result (13), but the exact distribution6 certainly cannot 

be appreciably sharper than given by (15). 

estimate an upper bound for the ~ ~ , ~ ( t ' )  by 

(t') is given by the perturbation 
k,k 

We may then 

The density of states a(hv)  is proportional to the 

normalization length L, and hence as L +m, we have N +w 
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remains finite for any finite time t'. Then as L -fa 

the terms in (24) involving ~~,~(t') can be neglected 

compared to those involving p (t') so Eq.  (24) 
becomes 

g,g 

f C.C. (29) 

Replacing the sum over k by an integral over excited state 

energies c, and using (28), we obtain 

t 

dt =!de ~ ( c )  lo dttlex ,g Eo /2h12 

The integral over c leads to a delta function 2nh6(t-t') 

multiplied by some slowly varying factors evaluated at 

resonance c = hv, and after doing the t integration we find 

the simple differential equation 

dP0 dt = y[l-P(t)] , 

where the rate constant y has the value (22) indicated by 

the perturbative theory. 

equation P(t) = 1 - e -yt is intuitively obvious. 
The solution of this differential 
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In conclusion, we understand the photoeffect as being 

the result of a classical field falling on a quantized atomic 

electron. The introduction of the photon concept is 

neither logically implied by nor necessary for the 

explanation of the photoelectric effect. 
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FOOTNOTES 

1. 

2. 

3 .  

4. 

5. 

6. 

F. K. Richtmyer, E. H. Kennard, T. Lauritsen, 

Introduction to Modern Physics, 5th ed. (McGraw 

Hill, New York 1955) p. 94. 

M. 0. Scully and W. E. Lamb, Jr., Phys. Rev. (to 

be published, 1968.) 

For simplicity we consider the problem to be one 

dimensional with electric field and motion of the 

electron confined to the x axis. 

Only the electric dipole part of the perturbation 

is taken, i.e., retardation and magnetic effects 

are neglected. 

to simplify the equations. 

This approximation is made only 

L. I. Schiff, Quantum Mechanics (McGraw-Hill Book 

Company, Inc., New York, 1955), p. 220, problem 2. 

This supposition can eventually be confirmed by 

examining equation (30). 

FIGURE CAPTION 

Classical field falling on atom having ground state \g> 

and continuum of excited states \k>, lowest excited state 

energy is @. 



b 

m 

J 
N 

x 


